1. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 's' s = sp.symbols('s') # Define 's' as a symbolic variable # 3rd: Define the function to integrate f = 3 # Define the function f = 3 # 4th: Compute the indefinite integral of the function indefinite_integral = sp.integrate(f, s) # Perform the integration with respect to 's' # 5th: Display the result sp.pprint(indefinite_integral) # Pretty print the result
2. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'r' r = sp.symbols('r') # Define 'r' as a symbolic variable # 3rd: Define the function to integrate f = r**8 + r**(-8) # Define the function f = r^8 + r^(-8) # 4th: Compute the indefinite integral of the function indefinite_integral = sp.integrate(f, r) # Perform the integration with respect to 'r' # 5th: Display the result sp.pprint(indefinite_integral) # Pretty print the result
3. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'n' n = sp.symbols('n') # Define 'n' as a symbolic variable # 3rd: Define the function to integrate f = 2 * sp.sec(n) * sp.tan(n) + (1 / (6 * n)) # Define the function f # 4th: Compute the indefinite integral of the function indefinite_integral = sp.integrate(f, n) # Perform the integration with respect to 'n' # 5th: Display the result sp.pprint(indefinite_integral) # Pretty print the result
4. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'm' m = sp.symbols('m') # Define 'm' as a symbolic variable # 3rd: Define the function to integrate f = 1 # Define the function f, which is simply 1 # 4th: Compute the indefinite integral of the function indefinite_integral = sp.integrate(f, m) # Perform the integration with respect to 'm' # 5th: Display the result sp.pprint(indefinite_integral) # Pretty print the result
5. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'x' x = sp.symbols('x') # Define 'x' as a symbolic variable # 3rd: Define the function to integrate f = 6 * x**5 - 18 * x**2 + 7 # Define the function f(x) # 4th: Compute the indefinite integral of the function indefinite_integral = sp.integrate(f, x) # Perform the integration with respect to 'x' # 5th: Display the result sp.pprint(indefinite_integral) # Pretty print the result