| Integration: Indefinite Integral - Code |

Dec. 21, 2024, 1:50 p.m.

 

 

 

 

1. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic mathematics

# 2nd: Define the variable 's'
s = sp.symbols('s')  # Define 's' as a symbolic variable

# 3rd: Define the function to integrate
f = 3  # Define the function f = 3

# 4th: Compute the indefinite integral of the function
indefinite_integral = sp.integrate(f, s)  # Perform the integration with respect to 's'

# 5th: Display the result
sp.pprint(indefinite_integral)  # Pretty print the result

 

 

 

 

2. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic mathematics

# 2nd: Define the variable 'r'
r = sp.symbols('r')  # Define 'r' as a symbolic variable

# 3rd: Define the function to integrate
f = r**8 + r**(-8)  # Define the function f = r^8 + r^(-8)

# 4th: Compute the indefinite integral of the function
indefinite_integral = sp.integrate(f, r)  # Perform the integration with respect to 'r'

# 5th: Display the result
sp.pprint(indefinite_integral)  # Pretty print the result

 

 

 

 

3. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic mathematics

# 2nd: Define the variable 'n'
n = sp.symbols('n')  # Define 'n' as a symbolic variable

# 3rd: Define the function to integrate
f = 2 * sp.sec(n) * sp.tan(n) + (1 / (6 * n))  # Define the function f

# 4th: Compute the indefinite integral of the function
indefinite_integral = sp.integrate(f, n)  # Perform the integration with respect to 'n'

# 5th: Display the result
sp.pprint(indefinite_integral)  # Pretty print the result

 

 

 

 

4. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic mathematics

# 2nd: Define the variable 'm'
m = sp.symbols('m')  # Define 'm' as a symbolic variable

# 3rd: Define the function to integrate
f = 1  # Define the function f, which is simply 1

# 4th: Compute the indefinite integral of the function
indefinite_integral = sp.integrate(f, m)  # Perform the integration with respect to 'm'

# 5th: Display the result
sp.pprint(indefinite_integral)  # Pretty print the result

 

 

 

 

5. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic mathematics

# 2nd: Define the variable 'x'
x = sp.symbols('x')  # Define 'x' as a symbolic variable

# 3rd: Define the function to integrate
f = 6 * x**5 - 18 * x**2 + 7  # Define the function f(x)

# 4th: Compute the indefinite integral of the function
indefinite_integral = sp.integrate(f, x)  # Perform the integration with respect to 'x'

# 5th: Display the result
sp.pprint(indefinite_integral)  # Pretty print the result