| Derivative of Inverse Trigonometric Functions |

Nov. 30, 2024, 11:32 a.m.

Definition

 

Inverse Trigonometric Function

-> The mathematical inverse of the standard trigonometric functions and their specific properties.

 

Formulas of Inverse Trigonometric Functions

 

1. Inverse Sine Derivative

-> The angle in radians such that sin(radians) = x. 

Formula: y = arcsin(x) if sin (y) = x.

 

2. Inverse Cosine Derivative

-> The angle in radians such that cos(radians) = x. 

Formula: y = arccos(x) if cos (y) = x.

 

3. Inverse Tangent Derivative

-> The angle in radians such that tan(radians) = x. 

Formula: y = arctan(x) if tan (y) = x.

 

4. Inverse Cotangent Derivative

-> The angle in radians such that cot(radians) = x. 

Formula: y = arccot(x) if cot (y) = x.

 

5. Inverse Secant Derivative

-> The angle in radians such that sec(radians) = x. 

Formula: y = arcsec(x) if sec (y) = x.

 

6. Inverse Cosecant Derivative

-> The angle in radians such that csc(radians) = x. 

Formula: y = arccsc(x) if csc (y) = x.

 

Example

 

1. Find the answer from this given:

y = arcsin 4x

 

Steps:

a. Write the d/dx first.

b. Use the specific derivative formula.

c. Find the dy/dx.

= y = arcsin 4x

=

= x = 4x; dx = 4; x2 = 16

=

 

Exercises

 

1.

Steps:

a. Write the dx/da first.

b. Use the specific derivative formula.

c. Find the dx/da.

 

Solution: 

=

= Formula:

=

=

=

=

=

 

Answer:

2.

Steps:

a. Write the dm/dn first.

b. Use the specific derivative formula.

c. Find the dm/dn.

 

Solution: 

=

= Formula:

=

=

=

=

 

Answer:

3.

Steps:

a. Write the dn/dw first.

b. Use the specific derivative formula.

c. Find the dn/dw.

 

Solution: 

=

= Formula:

=

= u = 1 + 4w; du = 4; u2= (1+4w)2

=

=

=

=

 

Answer:

4. m = arctan (t2)

Steps:

a. Write the dx/da first.

b. Use the specific derivative formula.

c. Find the dx/da.

 

Solution:

= m = arctan (t2)

= Formula:

= u = t2; du = 2t; u2 = t4

=

=

 

Answer:

5. g = x arctan 2x

Steps:

a. Write the dg/dx first.

b. Use the specific derivative formula.

c. Find the dg/dx.

 

Solution: 

= g = x arctan 2x

= Formula:

= d(uv) = u dv + v du

= u = x; du = 1

= v = arctan (2x); ;

=

=

 

Answer: