| Integral of Inverse Trigonometric Functions |

Nov. 30, 2024, 4:09 p.m.

Definition

 

Integral of Inverse Trigonometric Functions

-> this refers to the antiderivative of inverse trigonometric functions.

 

Formulas of Integral of Inverse Trigonometric Functions

 

1. Inverse of Sine Integral

-> this states the integral of inverse sine function.

Formula: 

 

2. Inverse of Secant Integral

-> this states the integral of inverse secant function.

Formula:

 

3. Inverse of Tangent Integral

-> this states the integral of inverse tangent function.

Formula:

 

Example

 

1. Find the answer from this given:

 

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

=

= a = 3; v = x; dv = dx

= Formula:

=

 

Exercises

 

1.

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

 

Solution:

=

= Formula:

= a = 4; v = x; dv = dx

=

 

Answer:

2.

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

 

Solution:

=

= Formula:

= Use substitution: u = x2; du = 2x dx

= a2 = 1; b2 = 42; a = 1; b = 2

=

= Substitute the u:

=

 

Answer:

3.

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

 

Solution:

=

= Formula:

= a = 2

=

 

Answer:

4.

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

 

Solution:

=

= Formula:

= u = 4 + x2; du = 2x dx; dx = du/2

= Use it to substitute:

=

= Substitute the u: 

=

 

Answer:

5.

Steps:

a. Write the given 1st.

b. Use the specific inverse trigonometric integral formula.

c. Find the inverse trigonometric integral.

 

Solution:

=

= Formula:

= u = ex; du = ex dx; dx = du/u

= e2x = (ex)2 = u2

= Use it to substitute:

=

= Substitute the u:

=

 

Answer: