| Integral of Trigonometric Functions |

Nov. 30, 2024, 3:59 p.m.

Definition

 

Integration of Trigonometric Functions

-> this refers to the antiderivative of trigonometric functions.

 

Formulas of Integral of Trigonometric Functions

 

1. Sine Integral

-> this states the integral of sine is equal to negative cosine.

Formula: 

 

2. Cosine Integral

-> this states the integral of cosine is equal to positive sine.

Formula: 

 

3. Tangent Integral

-> this states the integral of tangent is equal to logarithm secant.

Formula: 

 

4. Cotangent Integral

-> this states the integral of cotangent is equal to logarithm sine.

Formula:

 

5. Secant Integral

-> this states the integral of secant is equal to logarithm of secant plus tangent.

Formula: 

 

6. Cosecant Integral

-> this states the integral of cosecant is equal to logarithm of cosecant minus cotangent.

Formula: 

 

7. Secant2 Integral

-> this states the integral of secant2 is equal to positive tangent.

Formula: 

 

8. Cosecant2 Integral

-> this states the integral of cosecant2 is equal to negative cotangent.

Formula: 

 

9. Secant - Tangent Integral

-> this states the integral of secant - tangent is equal to positive secant.

Formula: 

 

10. Cosecant - Cotangent Integral

-> this states the integral of cosecant - cotangent is equal to negative cosecant.

Formula: 

 

Example

 

1. Find the answer from this given:

 

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Find the trigonometric integral.

=

= u = 2x; du = 2 dx; dx = 1/2 du

= Formula:

=

=

=

 

Exercises

 

1.

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Find the trigonometric integral.

 

Solution:

=

= Formula:

= u = cos (x); du = -sin (x) dx or -du = sin (x) dx 

=

=

=

 

Answer:

2.

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Find the trigonometric integral.

 

Solution:

=

= Formula:

= u = 5x; du = 5 dx; dx = 1/5 du

=

=

 

Answer:

3.

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Find the trigonometric integral.

 

Solution:

=

= Formula:

= u = sin (2x); du = 2 cos (2x) dx; dx = du/2 cos (2x)

= Use u and dx to substitute: 

=

=

=

=

 

Answer:

4.

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Use trigonometric identity.

d. Find the trigonometric integral.

 

Solution:

=

= Formula:

= Use trigonometric identity: sin2 (x) = 1 - cos2 (x)

= sin2 (x) = (1 + cos(x)) (1 - cos (x))

=

=

=

 

Answer:

5.

Steps:

a. Write the given 1st.

b. Use the specific trigonometric integral formula.

c. Find the trigonometric integral.

 

Solution:

=

= Formula:

= u = 1 + sin (x); du = cos (x) dx

=

=

=

 

Answer: