1. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variables 'z' and 'a' z, a = sp.symbols('z a') # Define symbolic variables 'z' and 'a' # 3rd: Define the integrand integrand = 1 / (1 + sp.sec(a) * z) # Define the function to integrate # 4th: Perform the integration with respect to 'z' integral_result = sp.integrate(integrand, z) # Compute the integral # 5th: Display the result sp.pprint(integral_result) # Pretty print the result
2. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'v' v = sp.symbols('v') # Define the symbolic variable 'v' # 3rd: Define the integrand integrand = sp.cos(v + 2) # Define the function to integrate # 4th: Perform the integration with respect to 'v' integral_result = sp.integrate(integrand, v) # Compute the integral # 5th: Display the result sp.pprint(integral_result) # Pretty print the result
3. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'f' f = sp.symbols('f') # Define the symbolic variable 'f' # 3rd: Define the integrand integrand = 1 / sp.sqrt(1 - sp.cos(9*f)) # Define the function to integrate # 4th: Perform the integration with respect to 'f' integral_result = sp.integrate(integrand, f) # Compute the integral # 5th: Display the result sp.pprint(integral_result) # Pretty print the result
4. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'm' m = sp.symbols('m') # Define the symbolic variable 'm' # 3rd: Define the integrand integrand = (1 - sp.cos(m)) / (1 + sp.cos(m)) # Define the function to integrate # 4th: Perform the integration with respect to 'm' integral_result = sp.integrate(integrand, m) # Compute the integral # 5th: Display the result sp.pprint(integral_result) # Pretty print the result
5. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variable 'n' n = sp.symbols('n') # Define the symbolic variable 'n' # 3rd: Define the integrand integrand = sp.tan(n)**2 # Define the function to integrate # 4th: Perform the integration with respect to 'n' integral_result = sp.integrate(integrand, n) # Compute the integral # 5th: Display the result sp.pprint(integral_result) # Pretty print the result