| Non - Repeated Linear Factors - Code |

Dec. 21, 2024, 4:29 p.m.

 

 

 

 

1. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic computation

# 2nd: Define the variable 'w'
w = sp.symbols('w')  # Define the symbolic variable 'w'

# 3rd: Define the integrand
integrand = (2 * w**2 + 1) / ((w - 1) * (w - 2) * (w - 3))  # Define the function to integrate

# 4th: Perform the integration with respect to 'w'
integral_result = sp.integrate(integrand, w)  # Compute the integral

# 5th: Display the result
print(integral_result)  # Print the result of the integral

 

 

 

 

2. What is the python code for this problem:

 

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic computation

# 2nd: Define the variable 't'
t = sp.symbols('t')  # Define the symbolic variable 't'

# 3rd: Define the integrand
integrand = (17 * t - 6) / (t**3 - t**2 - 6 * t)  # Define the function to integrate

# 4th: Perform the integration with respect to 't'
integral_result = sp.integrate(integrand, t)  # Compute the integral

# 5th: Display the result
print(integral_result)  # Print the result of the integral

 

 

 

 

3. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic computation

# 2nd: Define the variable 'r'
r = sp.symbols('r')  # Define the symbolic variable 'r'

# 3rd: Define the integrand
integrand = 1 / (r**4 - 13 * r**2 + 36)  # Define the function to integrate

# 4th: Perform the integration with respect to 'r'
integral_result = sp.integrate(integrand, r)  # Compute the integral

# 5th: Display the result
print(integral_result)  # Print the result of the integral

 

 

 

 

4. What is the python code for this problem:

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic computation

# 2nd: Define the variable 'h'
h = sp.symbols('h')  # Define the symbolic variable 'h'

# 3rd: Define the integrand
integrand = 1 / (h**3 + h)  # Define the function to integrate

# 4th: Perform the integration with respect to 'h'
integral_result = sp.integrate(integrand, h)  # Compute the integral

# 5th: Display the result
print(integral_result)  # Print the result of the integral

 

 

 

 

5. What is the python code for this problem:

 

# 1st: Import the sympy module
import sympy as sp  # Import sympy for symbolic computation

# 2nd: Define the variable 'f'
f = sp.symbols('f')  # Define the symbolic variable 'f'

# 3rd: Define the integrand
integrand = 1 / (f**2 + f)  # Define the function to integrate

# 4th: Perform the integration with respect to 'f'
integral_result = sp.integrate(integrand, f)  # Compute the integral

# 5th: Display the result
print(integral_result)  # Print the result of the integral