1. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic computation # 2nd: Define the variable and the function t = sp.symbols('t') # Define the symbolic variable 't' f = (2*t + 1) / (t**2 * (t**2 + 1)) # Define the function to integrate # 3rd: Perform partial fraction decomposition decomp = sp.apart(f) # Compute the partial fraction decomposition # 4th: Compute the integral of the decomposed expression integral = sp.integrate(decomp, t) # Perform the integration # 5th: Output the result print("The integral is:", integral) # Print the result of the integral
2. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic computation # 2nd: Define the variable and the function v = sp.symbols('v') # Define the symbolic variable 'v' f = (v**4 + 1) / (v**4 - 1) # Define the function to integrate # 3rd: Perform partial fraction decomposition decomp = sp.apart(f) # Compute the partial fraction decomposition # 4th: Compute the integral of the decomposed expression integral = sp.integrate(decomp, v) # Perform the integration # 5th: Output the result print("The integral is:", integral) # Print the result of the integral
3. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic computation # 2nd: Define the variable and the function s = sp.symbols('s') # Define the symbolic variable 's' f = (s**3 + s**2 + s + 3) / ((s**2 + 1)*(s**2 + 3)) # Define the function to integrate # 3rd: Perform partial fraction decomposition decomp = sp.apart(f) # Compute the partial fraction decomposition # 4th: Compute the integral of the decomposed expression integral = sp.integrate(decomp, s) # Perform the integration # 5th: Output the result print("The integral is:", integral) # Print the result of the integral
4. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic computation # 2nd: Define the variable n = sp.symbols('n') # Define the symbolic variable 'n' # 3rd: Define the integrand integrand = (n**3 + 4*n - 2) / (n**3 - 8) # Define the function to integrate # 4th: Integrate the expression integral_result = sp.integrate(integrand, n) # Perform the integration # 5th: Display the result print(integral_result) # Print the result of the integral
5. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic computation # 2nd: Define the variable m = sp.symbols('m') # Define the symbolic variable 'm' # 3rd: Define the integrand integrand = 1 / ((m**2 + 1)*(m**2 + 4)) # Define the function to integrate # 4th: Integrate the expression integral_result = sp.integrate(integrand, m) # Perform the integration # 5th: Display the result print(integral_result) # Print the result of the integral