1. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import SymPy for symbolic mathematics # 2nd: Define the parameter t t = sp.symbols('t') # Define 't' as a symbolic parameter # 3rd: Define the parametric equations x = sp.sqrt(1 - t) # Define x = sqrt(1 - t) y = t**3 - 3*t # Define y = t^3 - 3*t # 4th: Differentiate x and y with respect to t dx_dt = sp.diff(x, t) # Compute dx/dt dy_dt = sp.diff(y, t) # Compute dy/dt # 5th: Compute dy/dx using the chain rule (dy/dx = (dy/dt) / (dx/dt)) dy_dx = sp.simplify(dy_dt / dx_dt) # Simplify the expression for dy/dx # 6th: Display the results using pretty printing print("dx/dt:") sp.pprint(dx_dt, use_unicode=True) # Pretty print dx/dt print("\ndy/dt:") sp.pprint(dy_dt, use_unicode=True) # Pretty print dy/dt print("\ndy/dx:") sp.pprint(dy_dx, use_unicode=True) # Pretty print dy/dx
2. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import SymPy for symbolic mathematics # 2nd: Define the symbolic variable n = sp.symbols('n') # Define 'n' as a symbolic variable # 3rd: Define u in terms of n u = 1 - 2 * n # Define u = 1 - 2n # 4th: Define m in terms of u m = u**3 # Express m using u directly as m = (1 - 2n)³ # 5th: Differentiate m with respect to n dm_dn = sp.diff(m, n) # Compute the derivative of m with respect to n # 6th: Display the result using pretty printing print("The derivative dm/dn is:") sp.pprint(dm_dn, use_unicode=True) # Pretty print the derivative
3. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import SymPy for symbolic mathematics # 2nd: Define the symbolic variables m, n = sp.symbols('m n') # Define 'm' and 'n' as symbolic variables # 3rd: Define the implicit equation equation = 15 * m - (15 * n + 5 * n**3 + 3 * n**5) # Given implicit equation # 4th: Treat n as a function of m n_func = sp.Function('n')(m) # Define n as a function of m # 5th: Substitute n with n(m) in the equation equation_sub = equation.subs(n, n_func) # 6th: Differentiate both sides with respect to m diff_eq = sp.diff(equation_sub, m) # 7th: Solve for dn/dm (n'(m)) dn_dm = sp.Derivative(n_func, m) # Define dn/dm solution = sp.solve(diff_eq, dn_dm) # Solve for dn/dm # 8th: Display the result using pretty printing print("The derivative dn/dm is:") sp.pprint(solution[0] if solution else "No solution found.", use_unicode=True)
4. What is the python code for this problem:
# 1st: Import the sympy module import sympy as sp # Import sympy for symbolic mathematics # 2nd: Define the variables x, u = sp.symbols('x u') # Define 'x' and 'u' as symbolic variables # 3rd: Define the function y in terms of u y = u - u**2 # Define y = u - u² # 4th: Express u in terms of x u_expr = 2 * x # Given u = 2x # 5th: Substitute u in y y_expr = y.subs(u, u_expr) # Replace u with 2x in y # 6th: Differentiate y with respect to x dy_dx = sp.diff(y_expr, x) # Compute dy/dx # 7th: Display the result using pretty printing print("The derivative dy/dx is:") sp.pprint(dy_dx, use_unicode=True) # Output the simplified derivative
5. What is the python code for this problem:
# 1st: Import the necessary modules import numpy as np # Import numpy for numerical operations import matplotlib.pyplot as plt # Import matplotlib for plotting # 2nd: Define the parameter t t = np.linspace(-5, 5, 300) # Generate 300 points for a smoother curve # 3rd: Define the parametric equations n = t - 1 # Define n = t - 1 y = t**2 + 1 # Define y = t^2 + 1 # 4th: Create and customize the plot plt.figure(figsize=(8, 6), dpi=100) # Create a high-quality figure plt.plot(n, y, label=r'$\mathbf{n = t - 1, \quad y = t^2 + 1}$', color='b', linewidth=2) # Plot with label & thickness # 5th: Enhance plot with labels, title, and grid plt.title('Parametric Curve: $n = t - 1, \quad y = t^2 + 1$', fontsize=14, fontweight='bold') # Add title plt.xlabel(r'$\mathbf{n (t - 1)}$', fontsize=12) # X-axis label plt.ylabel(r'$\mathbf{y (t^2 + 1)}$', fontsize=12) # Y-axis label plt.axhline(0, color='black', linewidth=1, linestyle='--') # Add x-axis reference line plt.axvline(0, color='black', linewidth=1, linestyle='--') # Add y-axis reference line plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7) # Add grid with transparency plt.legend(fontsize=12, loc='upper left') # Display the legend plt.show() # Show the final plot