| Integration: Definite Integral |

Sept. 3, 2024, 4:45 p.m.

Definition

 

Definite Integral

-> also known as Riemann Integral that the bound to lie on the real line.

Symbol:

Where:

It contains the upper (b) and lower (a) limits. 

X where is restricted to lie on a real line.

 

Properties of Definite Integral

 

1. Linearity Rule

-> the c1 and c2 are constants.

Formula: 

 

2. Additivity (Internal Addition) Rule

-> a < c < b.

Formula: 

 

3. Limit Reversal Rule

-> switching the limits changes the sign of the integral.

Formula: 

 

4.  Zero Width Interval Rule

-> the integral over an interval of 0 width is 0.

Formula: 

 

5.   Fundamental Theorem of Calculus Rule - 1

-> the F(x) is an antiderivative of f(x) on [a,b].

Formula: 

 

6.   Fundamental Theorem of Calculus Rule - 2

-> the F(x)

Formula: 

 

Example

 

1. Find the answer from this given:

 

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

=

= C = 1; n = 2; n +1 = 3

=

= ;

=

=

= ;

=

=

 

Exercises

 

1.

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

 

Solution:

=

= Formula: ;

= c = 1; n = 1; n + 1 = 2

= ;

=

= (22) - (12) = 4 - 1

= 3

 

Answer: 3

2.

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

 

Solution:

=

= Formula:

= n = 2; n + 1 = 3

=

=

=

=

 

Answer:

3.

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

 

Solution:

=

= Formula: ;

= ;

= c1 = -3; c2 = 3; c3 = 2; n1 = 3; n1 + 1 = 4; n2 = 1; n2 + 1 = 1

=

=

=

=

= ;

=

=

 

Answer:

4.

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

 

Solution:

=

= Formula:

= - cos (x) + C

=

= - cos (1)

= - cos (0)

= - cos (1) - ( -cos (0) ) 

= 1 - cos (1)

 

Answer: 1 - cos (1)

5.

Steps:

a. Write the given 1st.

b. Use the specific indefinite properties formula.

c. Use the specific definite properties formula.

d. Find the definite integral.

 

Solution:

=

= Formula:

= c = 1; n = 1/2; n + 1 = 3/2

=

=

=

=

=

=

=

=

 

Answer: