| Integral of Hyperbolic Functions |

Nov. 30, 2024, 5:34 p.m.

Definition

 

Integral of Hyperbolic Functions

-> this refers to integrate the hyperbolic functions.

 

Formulas of Integral of Hyperbolic Functions

 

1. Hyperbolic Sine Integral 

-> this states the integral of hyperbolic sine function.

Formula: 

 

2. Hyperbolic Cosine Integral

-> this states the integral of hyperbolic cosine function.

Formula: 

 

3. Hyperbolic Secant2 Integral

-> this states the integral of hyperbolic secant2 function.

Formula: 

 

4. Hyperbolic Cosecant2 Integral

-> this states the integral of hyperbolic cosecant2 function.

Formula: 

 

5. Hyperbolic Secant & Tangent Integral

-> this states the integral of hyperbolic secant & tangent function.

Formula: 

 

6. Hyperbolic Cosecant & Cotangent Integral

-> this states the integral of hyperbolic cosecant & cotangent function.

Formula: 

 

7. Hyperbolic Tangent Integral

-> this states the integral of hyperbolic tangent function.

Formula: 

 

8. Hyperbolic Cotangent Integral

-> this states the integral of hyperbolic cotangent function.

Formula: 

 

9. Hyperbolic Secant Integral

-> this states the integral of hyperbolic secant function.

Formula: 

 

10. Hyperbolic Cosecant Integral

-> this states the integral of hyperbolic cosecant function.

Formula: 

 

Example

 

1. Find the answer from this given:

 

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Find the hyperbolic trigonometric integral.

=

= a = 4

= Formula:

=

 

Exercises

 

1.

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Find the hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = x3; du = 3x2 dx; x2 dx = du/3x2

= Solve x2: x2 = u2/3

= New Given:

= Simplify:

= Substitute the x: x = u1/3; 1/x = u-1/3 du

=

=

=

 

Answer:

2.

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Find the hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = 4x + 1; du = 4 dx; dx = du/4

= New Given:

=

=

 

Answer:

3.

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Find the hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = ln (x); du = dx/x; dx = x du

= New Given:

=

 

Answer:

4.

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Find the hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = ; du = ;

= New Given:

=

 

Answer:

5.

Steps:

a. Write the given 1st.

b. Use the specific hyperbolic trigonometric integral formula.

c. Use Hyperbolic Identities.

c. Find the hyperbolic trigonometric integral.

 

Solution:

=

= Formula: ;

= Use Hyperbolic Identities: ;

=

= Substitute:

= Simplify:

=

= New Given:

=

= Use this to integrate:

=

= Simplify:

=

= Combine:

=

 

Answer: