| Integral of Inverse Hyperbolic Functions |

Nov. 30, 2024, 5:44 p.m.

Definition

 

Integral of Inverse Hyperbolic Functions

-> this refers to integrate the inverse hyperbolic.

 

Formulas of Integral of Inverse Hyperbolic Functions

 

1. Inverse Hyperbolic Sine Integral

-> this states the integral of inverse hyperbolic sine function.

Formula: 

 

2. Inverse Hyperbolic Cosine Integral

-> this states the integral of inverse hyperbolic cosine function.

Formula: 

 

3. Inverse Hyperbolic Tangent Integral

-> this states the integral of inverse hyperbolic tangent function if u2 < a2.

Formula: 

 

4. Inverse Hyperbolic Cotangent Integral

-> this states the integral of inverse hyperbolic cotangent function if u2 > a2.

Formula: 

 

5. Inverse Hyperbolic Secant Integral

-> this states the integral of inverse hyperbolic secant function.

Formula: 

 

6. Inverse Hyperbolic Cosecant Integral

-> this states the integral of inverse hyperbolic cosecant function.

Formula: 

 

Example

 

1. Find the answer from this given:

 

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

=

= u = 3x; du = 3 dx

= Formula:

=

=

 

Exercises

 

1.

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = 3x; du = 3 dx; a = 1

=

=

 

Answer:

2.

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= a2 = 4; a = 4

=

=

 

Answer:

3.

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

 

Solution:

=

=  Formula:

= a2 = 9; a = 3; u2 = 4x2; u = 2x

=

 

Answer:

4.

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= a2 = 49; a = 7; u2 = 4x2; u = 2x

=

=

 

Answer:

5.

Steps:

a. Write the given 1st.

b. Use the specific inverse hyperbolic trigonometric integral formula.

c. Find the inverse hyperbolic trigonometric integral.

 

Solution:

=

= Formula:

= u = ex; du = ex dx; dx = du/u; a2 = 49; a = 7

=

 

Answer: