| Derivative of Exponential Functions |

Nov. 30, 2024, 12:19 p.m.

Definition

 

Derivative of Exponential Function

-> The derivative of a exponential function depends on its base and exponent.

Symbol:

Where:

The a is the base, constant, a>0 and a not equal to 1.

The x is the exponent and variable.

 

Formulas of Exponential Derivatives

 

1. Natural Exponential Function ex Rule

-> The property states that ex is the derivative itself. 

Formula: 

 

2. General Exponential Function ax Rule

-> The property involves multiplying the original function by the natural log of the base a, denoted by ln a. 

Formula:

 

 

3. General Exponential Function with Nonlinear Argument au(x) Rule

-> The property involves the natural log of the base and the derivative of the exponent. 

Formula: 

 

4. Exponential Function with a Linear Argument eax+b Rule

-> The property states the exponent is a linear function ax + b, the derivative involves the coefficient a of x.

Formula: 

 

5. Exponential Function with a Constant Multiplier C.eu(x) Rule

-> The property tells the exponential function is multiplied by a constant C, the derivative retains this constant factor.

Formula: 

 

Example

 

1. Find the answer from this given:

y = cos e3x

 

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

= y = cos e3x

= u = e3x; du = 3e3x

=

= - 3e3x sin e3x

 

Exercises

 

1. y = e-3x

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

 

Solution:

= y = e-3x

= Formula:

= u = -3x; du = -3

=

= -3 . e-3x

= -3e-3x

 

Answer: -3e-3x

2. g = 102t

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

 

Solution:

= g = 102t

= Formula:

= u = 2t; du = 2

= a = 10

=

= 2 . 102t . ln(10)

= 2 ln 10 (102t)

 

Answer: 2 ln 10 (102t)

3. f = ln (5 - 4e4x)

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

 

Solution:

= f = ln (5 - 4e4x)

= Formula:

= u = 5 - 4e4x; du = -16e4x

=

=

 

Answer:

4. j = cos e-4x

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

 

Solution:

= j = cos e-4x

= Formula:

= u = e-4x; du = -4e-4x

=

= -4e-4x . -sin e-4x

= 4e-4x sin e-4x

 

Answer: 4e-4x sin e-4x

5. k = a2 + a4 e-2 ln a

Steps:

a. Write the given and determine the value.

b. Use the specific Exponential formula.

c. Find the exponential derivative.

 

Solution:

= k = a2 + a4 e-2 ln a

= Formula: ;  

= u = a4; du = 4a3

= v = e-2 ln a; dv =

= 2a + e-2 ln a + 4a3 e-2 ln a

= 2a - 2a3 e-2 ln a + 4a3 e-2 ln a

= 2a + 2a3 e-2 ln a

= 2a (1 + 2a3 e-2 ln a)

 

Answer: 2a (1 + 2a3 e-2 ln a)