| Derivative of Inverse Hyperbolic Functions |

Nov. 30, 2024, 1:40 p.m.

Definition

 

Inverse Hyperbolic Functions

-> This tells the inverse of hyperbolic functions.

 

Formulas of Inverse Hyperbolic Functions

 

1. Inverse Hyperbolic Sine Rule

-> The property tells inverse hyperbolic sine function returns the value whose hyperbolic sine is ?.

Formula: 

 

2. Inverse Hyperbolic Cosine Rule

-> The property tells inverse hyperbolic cosine function returns the value whose hyperbolic cosine is ?.

Formula:

 

3. Inverse Hyperbolic Tangent Rule

-> The property tells inverse hyperbolic tangent function returns the value whose hyperbolic tangent is ?, where |x| < 1.

Formula: 

 

4. Inverse Hyperbolic Cotangent Rule

-> The property tells inverse hyperbolic cotangent function returns the value whose hyperbolic cotangent is ?, where |x| > 1.

Formula: 

 

5. Inverse Hyperbolic Secant Rule

-> The property tells inverse hyperbolic secant function returns the value whose hyperbolic secant is ?.

Formula: 

 

6. Inverse Hyperbolic Cosecant Rule

-> The property tells inverse hyperbolic cosecant function returns the value whose hyperbolic cosecant is ?.

Formula: 

 

Example

 

1. Find the answer from this given:

y = sinh-1 4x

 

Steps:

a. Write the given and determine the value.

b. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

= y = sinh-1 4x

= u = 4x; du = 4

=

=

 

Exercises

 

1. tanh-1 (2x + 1)

Steps:

a. Write the given and determine the value.

b. Use the specific general derivative formula.

c. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

 

Solution:

= tanh-1 (2x + 1)

= Formula: ;

= u = 2x + 1; du = 2

=

=

 

Answer:

2. sech-1 (3x)

Steps:

a. Write the given and determine the value.

b. Use the specific general derivative formula.

c. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

 

Solution:

= sech-1 (3x)

= Formula:

= u = 3x; du = 3

=

=

 

Answer:

3. coth-1 (x2)

Steps:

a. Write the given and determine the value.

b. Use the specific general derivative formula.

c. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

 

Solution:

= coth-1 (x2)

= Formula: ;

= u = x2; du = 2x

=

=

 

Answer:

4. cosh-1 (x2 + 2x + 2)

Steps:

a. Write the given and determine the value.

b. Use the specific general derivative formula.

c. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

 

Solution:

= cosh-1 (x2 + 2x + 2)

= Formula: ;

 ;

= u = x2 + 2x + 2; du = 2x + 2

=

=

 

Answer:

5. csch-1 (x3)

Steps:

a. Write the given and determine the value.

b. Use the specific general derivative formula.

c. Use the specific Inverse Hyperbolic derivative formula.

c. Find the inverse hyperbolic derivative.

 

Solution:

= csch-1 (x3)

= Formula: ;

= u = x3; du = 3x2

=

=

 

Answer: